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Abstract

This report attempts to consolidate everything we’ve learnt about
the Sunyaez Zel’dovich Effect (henceforth referred to as SZ Effect)
beginning from the derivation of the Kompaneet’s equation and cul-
minating with the derivation of g̃(x) - a function simply related to the
change in intensity of the Cosmic Microwave Background Radiation
(CMBR) ∆I(x), from which the SZ Effect can be calculated.
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1 Derivation of Kompaneet’s Equation

1.1 Compton Scattering

When an energetic photon interacts with a charged particle (say, an electron)

it was found that, contrary to the classical view of light, the photon undergoes

an inelastic with the particle. This leads to the reduction of the energy of

the photon and provides the stationary or slow moving electron with a recoil

velocity. This phenomenon is known as Compton Scattering and its discovery

in 1923 was a further nail in the coffin of the classical theory which described

light as a wave.

Now, Compton Scattering follows Energy Conservation and Momentum

Conservation, thus from these two equations, we can arrive at an equation

for the shift in the wavelength of the incident photon.

Let us now consider the scattering of a photon with a stationary electron.

If the unprimed variables denote the electron (e) and photon (γ) before the

scattering occurs and the primed variables denote the electron and the photon

after the scattering, we can see that Energy Conservation and Momentum

Conservation state that:

Eγ + Ee = E ′
γ + E ′

e (1)

−→pγ =
−→
p′γ +

−→
p′e (2)

Now, if h is Planck’s Constant, c the speed of light, me the rest mass

of the electron and ν and ν ′ the initial and final frequencies of the photon

respectively, then:
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Eγ = hν ; E ′
γ = hν ′ ; Ee = mec

2

E ′
e =

√

(p′ec)
2 + (mec2)2

Substituting these relations in Eqn (1), we get:

hν +mec
2 = hν ′ +

√

(p′ec)
2 + (mec2)2 (3)

which on rearranging and squaring would provide us with the equation:

p′e
2c2 = (hν +mec

2 − hν ′)2 −m2
ec

4 (4)

and on rearranging Eqn (2) we get:

−→
p′e = −→pγ −

−→
p′γ (5)

which when dotted with itself provides an expression for p′e
2

−→
p′e .

−→
p′e = (−→pγ −

−→
p′γ ).(

−→pγ −
−→
p′γ ) = p2γ + p′γ

2 − 2pγp
′
γ cos θ (6)

Thus p′e
2c2 is:

p′e
2c2 = (pγc)

2 + (p′γc)
2 − 2c2pγp

′
γ cos θ (7)

Now, using the relation E = pc, and equating the energies Eγ and E ′
γ to

the frequencies ν and ν ′ respectively, we get:

p′e
2c2 = (hν)2 + (hν ′)2 − 2(hν)(hν ′) cos θ (8)

Substituting p′e
2c2 into Eqn (4):

(hν +mec
2 − hν ′)2 −m2

ec
4 = (hν)2 + (hν ′)2 − 2(hν)(hν ′) cos θ (9)
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On expanding and rearranging the previous equation, we can see that:

2hνmec
2 − 2hν ′mec

2 = 2h2νν ′(1− cos θ) (10)

Dividing the entire equation by 2hνν ′mec, it takes the form:

c

ν ′
− c

ν
=

h

mec
(1− cos θ) (11)

Now using the relation c/ν = λ, we can see that

λ′ − λ =
h

mec
(1− cos θ) (12)

Assigning ∆λ = λ′−λ and λc = h/mec - called the ’Compton wavelength’:

∆λ = 2λc(1− cos θ) (13)

1.2 Inverse Compton Scattering

One also encounters the opposite effect: of energetic particles transferring

momentum to low energy photons. This process is called ’Inverse Compton

Scattering’. These two apparently different phenomena can be thought of

as the same process viewed from two different frames of reference. If the

observer were at rest with respect to the high energy particle, the scattering

would appear as Compton scattering, as the electron will appear to be at

rest while the photon highly energetic.

Let us assume an electron that is not stationary and a photon of energy hν

colliding with it at an angle α to the electron’s trajectory. Since the electron

is moving at relativistic speeds, it will have an energy of γmec
2 where γ is

the Lorentz factor, given by: γ =
1√

1−v2/c2
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Now, shifting from our stationary frame to the rest frame of the electron,

the incident photon’s frequency will appear to be blue shifted, due to the

relativistic doppler shift, and so the apparent frequency of the photon will

be given by:

ν ′ = γν(1 − v

c
cos θ) (14)

Also, in the electron’s rest frame, the angle α will transform to α′ which

will be given by the equations

sinα′ =
sinα

γ[1 + (v/c) cosα]
cosα′ =

cosα + (v/c)

1 + (v/c) cosα
(15)

Now, the photon will appear to be blue shifted, with an energy:

hν ′ = γhν(1 − v

c
cos θ) (16)

Now, these new equations for the new frequency (ν ′) and the new angle

(α′), can be substituted into the earlier equations for Compton Scattering to

provide us with the scattered wavelength and frequency (λ′′ and ν ′′ in the

electron’s rest frame:

λ′′ − λ′ =
h

mec
(1− cosα′) (17)

Substituting the relation λ = c/ν and the cosα′ from Eqn (15):

c

ν ′′
− c

ν ′
=

h

mec
(1− cosα′) (18)

Substituting ν ′ from Eqn (14) we get:

c

ν ′′
− c

γν[1 − (v/c) cosα]
=

h

mec
(1− cosα + (v/c)

1 + (v/c) cosα
) (19)
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Taking a few special cases:

a) For α = 0 It isn’t hard to show that the entire right hand side of the

equation goes to zero. Thus:

c

ν ′′
=

c

γν(1− (v/c))
(20)

Using the approximation 1− v
c =

1−v2/c2
1+(v/c) ≈ 1

2γ2

We can see that ν ′′ = γν
2γ2

=
ν
2γ

b) Similarly, for α = π The velocity is now changed from v to −v since the
photon is now approaching from the other side. The equation now becomes:

c

ν ′′
− c

γν(1 + (v/c))
=

h

mec
(1− (v/c)− 1

1− (v/c)
) (21)

On dividing the entire equation by c, multiplying by ν and applying the

approximation 1 + (v/c) ≈ 2 (since the electron’s velocity is comparable to

the speed of light), we get:

ν

ν ′′
− 1

2γ
=

2hν

mec2
(22)

Now, in the realm that we are interested in hν ≪ mec
2 and so the entire

right hand side of the equation goes to zero. On rearranging, we get:

ν ′′ ≈ 2γν (23)

c) For a more or less average case of α = π
2
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c

ν ′′
− c

γν
=

h

mec
(1− (v/c)) (24)

Dividing the equation by c and multiplying by ν we can use similar rea-

soning as the last time to show that the new frequency is now:

ν ′′ ≈ γν (25)

Now, all values of α are possible, and so for the ’average’ value of α = π
2

we see that

hν ′′ ∼ hν ′ ∼ γhν

However, another transformation is necessary, to bring this back to the

stationary frame, and thus the photon is again blue shifted by a further factor

of γ due to the Lorentz Transformation. Thus, if νs is the frequency in the

stationary frame, we have:

hνs ∼ γhν ′′ ∼ γ2hν (26)

This result has important applications in astrophysics. One often en-

counters electrons with large values of γ (generally of the order 103), which

scatter the incident low energy photon causing it to gain energy by a factor

of γ2 (106). Thus, any incident radio photons of frequency ν = 109Hz will

now be shifted up the spectrum to a ν ′ = 1015Hz

1.3 Derivation of expression for ν ′ − ν

The conservation of energy and momentum state that:
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hν +
−→p 2

2me

= hν ′ +

−→
p′ 2

2me

(27)

hν

c
n̂+−→p =

hν ′

c
n̂′ +

−→
p′ (28)

where n̂ and n̂′ are the directions of the electron’s initial and final trajec-

tory. The unprimed values denote the values before the scattering and the

primed denote values after the scattering.

Defining a new value ∆ = ν ′ − ν, we get from Eqn (27):

h∆ =
1

2me
(−→p 2 −

−→
p′ 2) (29)

and on rearranging (28):

−→
p′ = −→p +

h

c
(νn̂− ν ′n̂′) (30)

Squaring the previous equation, we get:

p′2 =
h2

c2
(ν2 + ν ′2 − 2νν ′n̂n̂′) + p2 + 2

h−→p
c
.(νn̂− ν ′n̂′) (31)

Substituting ν ′ = ∆+ ν we get:

p′2 =
h2

c2
(ν2+∆2+ν2+2ν∆−2ν(∆+ν)n̂n̂′)+p2+2

h−→p
c
.(νn̂−(∆+ν)n̂′) (32)

Substituting this value of p′2 into Eqn (29):

2meh∆ = p2−[
h2

c2
(2ν2+∆2+2ν∆(1−n̂n̂′)−2ν2n̂n̂′)+p2+2

h−→p ν
c

(n̂−n̂′)−2
h∆−→p .n̂′

c
]

(33)

Ignoring the terms of ∆2, since we assume ∆ to be very small, we get:
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h∆(me +
hν

c2
(1− n̂n̂′)−

−→p .n̂′

c
) = −[

hν−→p .
c

(n̂− n̂′) + h2ν2(1− n̂n̂′)] (34)

Multiplying the equation by c2 and keeping h∆ to one side, we get the

equation:

h∆ = −hcν
−→p .(n̂− n̂′) + h2ν2(1− n̂n̂′)

(mec2 + hν(1− n̂n̂′)− c−→p .n̂′
) (35)

Now, if we take hν ∼ kBT ∼ O(mev
2), where v is some characteristic

electron thermal velocity, then we see that both the second term in the nu-

merator and the third term in the denominator are O(v/c) to their first terms

respectively. The second term in the denominator is similarly an O(v2/c2) to

its first term, and thus taking only the leading terms in the previous equation,

we have:

h∆ ≈ −hν
−→p .(n̂− n̂′)

mec
(36)

1.4 Calculation of Boltzmann Equation for Photon Oc-

cupation Number

There are n! ways of arranging n particles. If the particles are distinguishable,

the probability of having n particles in a state is given by:

Pdist(n) = n!|ua(x1)ua(x2)...ua(xn|2 (37)

If, however, the particles are identical, the probability of having n such

particles in a state is given instead by:

Pindist(n) = |n!ua(x1)ua(x2)...ua(xn|2 = n!Pdist(n) (38)
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Now if p is the probability that a distinguishable particle goes into a state

and the state already has n such particles in it, then the probability of adding

another particle is:

Pdist(n+ 1) = pPdist(n) (39)

However, bosons are indistinguishable, and thus the probability of adding

a boson to a state that already has n particles in it is:

Pboson(n+ 1) = (n+ 1)!Pdist(n+ 1) = (n+ 1)!pPdist(n) = (n+ 1)n!pPdist(n)

(40)

Thus, the probability of adding a boson (like a photon) to a state already

containing n particles is enhanced by a factor of (n+ 1). i.e:

Pboson(n+ 1) = (n+ 1)pPboson(n) (41)

We will use this fact to derive the Boltzmann distribution governing the

evolution of the photon occupation number η(ν).

The rate of change of η(ν) with time can be represented as an integral

over momentum space. Now, let us define the values N(E) as the electron

distribution function per unit momentum space and dσ = (dσ/dΩ)dΩ as the

infinitesimal element of the cross-section of scattering of a photon into the

element of the solid angle dΩ.

If we assume our electrons to be in thermal equilibrium, this will simply

depend on the energy and not on the direction, since in thermal equilibrium

no particular is favored. Also, the scattering cross-section σ of an interaction

is the hypothetical area around the target particles that represents a surface

within which there is some kind of interaction. Now, in time t, a photon

would have covered a volume equal to cdσt. The number of interactions
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in this volume would depend on the number of electrons present in it, i.e,

the photon occupation number η(ν) and the electron distribution function

N(E). However, since photons are bosons, this will be enhanced by a factor

(1+ η(ν ′)) as shown before, as the state would already have η(ν ′) photons in

it.

However, there will also exist photons of frequency ν ′ that are scattered

to frequency ν and thus we would require a symmetric term relating η(ν ′),

(1 + η(ν)) and N(E ′) to be subtracted from the earlier term. This second

term proceeds at a different rate only because the occupation numbers of

photons and electrons are different. The scattering cross-section is the same

for both, because if it were not so an equilibrium gas of photons and electrons

would be able to drive itself away from equilibrium - a direct violation of the

second law of thermodynamics.

The electrons are fermions, and thus a further terms corresponding to the

fermion factor (1−N(E ′)) and (1−N(E)) should technically be multiplied

to each of the terms respectively. However, the electrons are assumed to be

non-degenerate, which implies that N ≪ 1 and so the factor is close to 1 and

thus ignored.

By the earlier definition of ∆ = ν ′ − ν we get:

ν ′ = ν +∆ and E ′ = E − h∆

Now, substituting the above values in an integral over momentum space

we get:

∂η(ν)

∂t
=

∫

d3p cdσ[η(ν)(1 + η(ν ′))N(E)− η(ν ′)(1 + η(ν))N(E ′)] (42)

We have already assumed the electron’s distribution to be Maxwellian.

Now, assuming that the photon distribution function is a general Bose dis-

tribution, then:
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η(ν) =
1

exp(a + hν/kBT )− 1
(43)

We can greatly simplify Eqn (42) by relating the primed coordinates to

the unprimed ones in terms of a Taylor expansion in powers of ∆, which we

assume to be very small:

In order to further simplify the equation, we will now define a new di-

mensionless constant x ≡ hν/kBT . The expansion now simply becomes:

η(ν ′) = η(ν +∆) = η(ν) +
h∆

kBT

∂η

∂x
+

1

2
(
h∆

kBT
)2
∂2η

∂x2
+ .... (44)

and since N(E) is an exponential function:

N(E ′) = N(E − h∆) = N(E)[1 +
h∆

kBT
+

1

2
(
h∆

kBT
)2 + ....] (45)

We will now attempt to substitute Eqns (44) and (45) into Eqn (42).

First let us define a new variable α ≡ h∆/kBT

η(ν)(1 + η(ν ′))N(E) = η(1 + η + α
∂n

∂x
+
α2

2

∂2n

∂x2
...)N(E) (46)

and

η(ν ′)(1 + η(ν))N(E ′) = (η + α
∂n

∂x
+
α2

2

∂2n

∂x2
...)(1 + η(ν))N(E)(1 + α+

α2

2
...)

(47)

Ignoring all terms greater that α2 and expanding the last equation we

get:
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η(ν ′)(1 + η(ν))N(E ′) = [η + α
∂n

∂x
+
α2

2

∂2n

∂x2
+ ηα+ α2∂n

∂x
+
α3

2

∂2n

∂x2
+
ηα2

2
+
α3

2

∂n

∂x
+ ...(48)

...
α4

4

∂2n

∂x2
+ η2 + αη

∂n

∂x
+
α2η

2

∂2n

∂x2
+ αη2 + α2η

∂n

∂x
+
α3η

2

∂2n

∂x2
+ ...(49)

...
α2η2

2
+
α3η

2

∂n

∂x
+
α4η

4

∂2n

∂x2
]N(E)(50)

On subtracting these equations and collecting powers of α we get the

difference equal to:

N(E)[α(
∂η

∂x
+ η + η2) +

α2

2
(
∂2η

∂x2
+ 2

∂η

∂x
+ η + 2η

∂η

∂x
+ η2)]

Now substituting this difference into the integral given in Eqn (42) and

also removing α we get:

∂η(ν)

∂t
=

∫

[
h∆

kBT
(
∂η

∂x
+η+η2)+

1

2
(
h∆

kBT
)2(

∂2η

∂x2
+2(1+η)

∂η

∂x
+η+η2)]N(E)c dσd3p

(51)

Let us define two new integrals I1 and I2 that are:

I1 ≡
∫

d3p cdσN(E)∆

I2 ≡
∫

d3p cdσN(E)∆2

The earlier equation now reduces to:

∂η(ν)

∂t
=

h

kBT
(
∂η

∂x
+η+η2)I1+

1

2
(
h

kBT
)2(

∂2η

∂x2
+2(1+η)

∂η

∂x
+η+η2)I2 (52)

with us only needing now to calculate the values of I1 and I2. With any

luck, we will not need to find the value of I2 and use reasoning to find the

form of I1.

13



Let us now substitute the value of ∆ Eqn (36) into the expression of I2

to get:

I2 = (
ν

mec
)2
∫

c dσ d3p N(E) (~p.(n̂− n̂′))2 (53)

Let us now write ~p.(n̂ − n̂′) = p.|n̂ − n̂′| cosψ where ψ is the included

angle between the two vectors. The quantity |n̂− n̂′|2 does not depend on ~p

and so can be taken out of the integral over electron momentum space.

The integral now has an angular integral of cos2 ψ which is 4π/3 for any

polar axis. Performing the integral over the direction of ~p

I2 =
1

3
(
ν

mec
)2
∫

c dσ |n̂− n̂′|2
∫

4πp2dp N(E) p2 (54)

The last integral is now merely ne times 〈p2〉, or 2me times the electron

kinetic energy density. Since we have assumed N(E) to be Maxwellian, this

has a value of 3kBTmene Then

I2 = (
ν

mec
)2kBTmenec

∫

dΩ
dσ

dΩ
|n̂− n̂′|2 (55)

The exact differential cross-section for Compton Scattering is given by the

Klein-Nishina formula. However, since we are working in the non-relativistic

limit, we approximate it by the Thomson differential cross-section

dσ

dΩ
=

1

2
r2e(1 + (n̂.n̂′)2)

re ≡
e2

mec2

where re is the classical electron radius. This would include a fractional

error ofO(v2/c2), but since we are considering the leading terms in expansions
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whose successive terms are O(v/c), this error can be ignored. Similarly, we

ignore the Lorentz Transformations between the stationary and scattering

frames in evaluating the differential cross-sections as in the non-relativistic

limit these frames are identical. A complete relativistic treatment would

include this, but would be too cumbersome.

Substituting this value for the differential cross section and also substi-

tuting |n̂− n̂′|2 = n̂2 + n̂′2 − 2n̂n̂′ = 2− 2(n̂n̂′)

I2 = (
ν

mec
)2kBTmenec

∫

dΩ
1

2
r2e(1 + (n̂.n̂′)2) (2− 2(n̂n̂′)) (56)

This integral is now carried over the photon scattering angle dΩ. All

integrals over spheres of odd powers of n̂n̂′ = cos θ are zero, while the integral

of cos2 θ is (as shown earlier) 4π/3. If we write the integral now in terms of

the Thompson cross-section σes = 8
3
πr2e , we get the value of the integral to

be:

I2 = 2(
ν

mec
)2kBTmeneσesc (57)

Substituting this equation into we see that the integral of ∆2 contributes a

term proportional to x2(∂2η/∂x2) to the ∂η/∂t term. This result will permit

the derivation of the Kompaneet’s Equation without further computation of

integrals.

We know that Compton Scattering conserves photons, and this the pho-

ton occupation number η(ν) must satisfy a conservation law in three dimen-

sional momentum space. Since we have a isotropic photon distribution, η

can depend only on the magnitude of the photon momentum and not the

angle or distance and thus the law takes the form:

∂η

∂t
= − 1

x2
∂(x2j)

∂x
(58)
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where j is the ’current density’ of the photons. Let us now observe Eqn

(48), which is:

∂η(ν)
∂t

=
∫
[ h∆
kBT

( ∂η
∂x

+η+η2)+ 1
2
( h∆
kBT

)2( ∂
2η

∂x2 +2(1+η) ∂η
∂x

+η+η2)]N(E)c dσd3p

As can be seen, this equation contains a term equal to ∂2η/∂x2 times

a function of x but not of η. This greatly allows us to simplify our final

equation. Now, Eqn (58) describes the same function, and thus must have

the same form. On expanding it, we get:

∂η

∂x
= − 1

x2
∂(x2j)

∂x
= −2

x
j − ∂j

∂x
(59)

Clearly from this we can see that since the coefficient of ∂2η/∂x2 is not

dependant on η, any term in j that is proportional to ∂η/∂x must depend

only on x. Therefore, we can now provide a general form for j(η, x):

j(η, x) = k(x)(
∂η

∂x
+ h(η, x)) (60)

Now if we manage to determine the functions k and h, we will have the

complete form of ∂η/∂x. To do this, we first observe that we have assumed

the photon distribution to be general Bose distribution, and the number of

photons is conserved, thus there are no photon sources or sinks. From this,

we can clearly see that j = 0 for this ’stationary solution’.

Using the general Bose distribution earlier provided, η = 1
ex−1

and thus

we can clearly see that:

∂η

∂x
= − ex

(ex − 1)2
= −η − η2 (61)

On substituting this and the condition that j = 0 into our new equation

for j and rearranging, we arrive at:
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h(η, x) = η + η2 (62)

for all η and x.

Now to determine k(x) we compare the coefficients of ∂2η/∂x from the

earlier two equations, we see that the coefficient is proportional to ν2. Thus,

k(x) ∝ ν2 ∝ x2. Comparing the constants, we see that:

k(x) = − kBT

mec2
neσescx

2 (63)

Let us now define a new dimensionless scaled quantity y that will make

our equation neater.

y ≡ t
kBT

mec2
neσesc (64)

Substituting the last three equations into our equation, we get Kompa-

neets Equation:

∂η

∂y
=

1

x2
∂

∂x
[x4 (

∂η

∂x
+ η + η2)] (65)

1.5 Kompaneets Equation and Comptonization: The

Sunyaev Zel’dovich Effect

In general, when high energy photons and electrons interact, the exchange

of energy between them leads to distinct changes in the photons’ spectrum

and the energy content of the electrons. If this interaction occurs due to

Compton scattering, the term Comptonization is used. In the case of - say

- non-relativistic, highly thermal electrons and photons with a Planckian

spectrum, this transfer will eventually lead to the balancing out of both the

spectrums.
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However, there exist some astronomical situations in which the electron

temperature is much higher than the temperature of the blackbody radiation.

In such cases, the spectrum of the photons is changed significantly from a

Planckian spectrum. In a non-relativistic case, the evolution of this spectrum

is described by the Kompaneet’s equation that was derived in the last section.

The parameter y that we described in the last section may be thought of as a

degree of interaction between the photons and electrons. y can be described

as:

y =
kBTe
mec2

neσesct =
kBTe
mec2

neσTL (66)

Where Te is the temperature of the electrons, ne their number density,

σes the scattering cross-section (which is the Thompson cross-section σT for

the non-relativistic limit) and ct = L the size of the gaseous system.

We will now try to simplify this equation. A few assumptions will allow

us to do this. For a start, let us assume Te ≫ Tγ where Tγ is the temperature

of the photons. This is justified in almost all the cases where Kompaneets

Equation is of any interest to us. Let us also assume that the distortion of

the spectrum is small, which will allow us to write:

η ∼ 1

efx − 1
(67)

where f is some distortion factor, and can be given by f = Tγ/Te

Using this η, we can calculate see that

∂η

∂x
=

−fefx
(efx − 1)2

∂2η

∂x2
=

∂

∂x
(−fefxη2) = −[f 2η2efx + 2fηefx

∂η

∂x
]
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From here, calculating the value of η2 + η + ∂η/∂x is a small step away:

η2+η+
∂η

∂x
=

1

(efx − 1)2
+

1

(efx − 1
− fefx

(efx − 1)2
=

(1− f)efx

(efx − 1)2
= (1−f−1)

∂η

∂x
(68)

Substituting this into Kompaneets Equation, we get:

∂η

∂y
=

(1− f−1)

x2
∂

∂x
(x4

∂η

∂x
) = (1− f−1)[x2

∂2η

∂x2
+ 4x

∂η

∂x
] (69)

Substituting the earlier values into this equation, (and doing some sloppy

math) we get:

∆η

∆y
= (1− f−1)[

−4xfefx

(efx)− 1)2
− x2f 2efx

(efx)− 1)2
− 2f 2x2e2fx

(efx)− 1)3
]

∆η

η
= ∆y(1− f−1)[

−4xfefx

(efx)− 1)
− x2f 2efx

(efx)− 1)
− 2f 2x2e2fx

(efx)− 1)2
]

Now, our x = hν/kBTe as earlier defined. If we redefine x = hν/kBTγ, i.e,

change fx → x, the equation can be simplified. Also, our distortion factor

f ≫ 1, as we have assumed Te ≫ Tγ and so 1 − 1
f
≈ 1. Thus our equation

now becomes:

∆η

η
= ∆y[− 4xex

ex − 1
− x2ex(ex − 1)− 2x2e2x

(ex − 1)2
]

∆η

η
= ∆y[− 4xex

ex − 1
− x2ex(−ex + 1 + 2ex)

(ex − 1)2
]

The ratio can now be written simply as:

∆η

η
= ∆y[

x2ex(ex + 1)

(ex − 1)2
− 4xex

ex − 1
] (70)
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Now, this is in the Rayleigh-Jeans part of the spectrum, in the limit

x≪ 1, this ratio approaches −2∆y as can be seen, using the approximation

limx→0
ex−1
x

= 1. Now, in the Rayleigh-Jeans region of the spectrum, η ∝ Tγ

and thus we see that the temperature of the blackbody photons suffers a

decrement of the order:

∆Tγ
Tγ

∼ −2∆y (71)

Let yth be used to refer to ∆y, the ’Comptonisation parameter’. This

result may now be applied to photons which are of the microwave background

radiation of the universe that pass through large reservoirs of hot gas present

in galactic clusters and are then detected by radio telescopes. In typical

clusters, ne ∼ 10−3cm−3 and a temperature Te ∼ 5×107K. The average size

of such clusters is of the order 6 × 1023cm. The distortion of the Rayleigh-

Jeans part of the spectrum can be calculated to be:

∆Tγ
Tγ

∼ 10−5 (72)

Although this is a small change, it has been recently detected. First

predicted in Sunyaev and Zel’dovich (1969) this is known as the Sunyaev

and Zel’dovich (SZ) Effect. This is now increasingly becoming an important

tool to detect and analyse regions of hot gas in the universe. This effect has

the added advantage of providing us with an absorption spectrum instead

of an emission spectrum. An emission spectrum would decrease in intensity

with increase in red-shift and thus it’d be harder to detect objects further

away. However, an absorption spectrum will retain its clarity independent of

distance. Thus we now have a way to detect galactic clusters independent of

red-shift.
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2 Comptonisation of the CMB

There are many processes by which the CMB can be Comptonised, but we

will restrict ourselves to the case of a non-thermal distribution of electrons

and if possible, a thermal distribution as well. However, before we begin

describing the non-thermal SZ effect, it would be better to adopt a generalised

approach.

2.1 The SZ Effect for galactic clusters: A generalised

approach

In this section we will attempt to derive a general expression for the SZ

effect that is valid in the Thomson limit for a general electron population in

the relativistic limit. We will also attempt to include the effects of multiple

scattering.

We define the electron’s normalised momentum as p = βγ, where as

shown earlier γ = 1/
√

1 + v2/c2 and β = v/c. We arrive at this by dividing

the electron’s relativistic momentum γmv, (where v is its velocity) by a factor

of mc.

Now, an electron with such a momentum increases the frequency ν of the

CMB photon by scattering it to a new frequency ν ′. Thus, it is convenient

to define a new quantity that represents this factor. Thus, we define t ≡
ν ′/ν. As already shown in the previous section while deriving Kompaneet’s

Equation, this factor t ∝ γ2, and so photons are scattered to much higher

frequencies.

Now, since we’re interested in large frequency shifts (t ≫ 1) it is con-

venient to use a logarithmic scale for frequency shifts. We thus define an

s ≡ ln(t). The CMB photons’ spectrum will be redistributed by the electron

population, and this redistribution function writes as:
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P1(s) =

∫ ∞

0

dpfe(p)Ps(s; p) (73)

Where fe(p) is the electron momentum distribution and Ps(s; p) is the

redistribution function for a mono-energetic electron function. Once we de-

termine P1(s), it is possible to evaluate the probability that a frequency

change of s is produced by a number n of repeated, multiple scatterings.

Thus, a repeated convolution is used to determine Pn(s). i.e:

Pn(s) = P1(s)⊗ ....⊗ P1(s)
︸ ︷︷ ︸

ntimes

(74)

where ⊗ represents each convolution product.

Now, the resulting total redistribution function Ps is written as a sum of

all the functions Pn(s), with each of the terms weighted by the probability

that a CMB photon suffers n scatterings. We will assume that the there are

a large number of n’s and the probability of a photon being scattered to any

one is very small. Clearly, this distribution will be Poissonian, as we will

show.

2.2 Derivation of a Poissonian Distribution

Let us assume we are tossing a biased coin N times, and since the coin in

biased, the probability of getting a head is very low, i.e, p≪ 1

The probability P (N, n) of getting n heads in N tosses is given by the

binomial distribution, which can be written as:

P (N, n) = N
Cnp

n(1− p)N−n =
N !

(N − n)!n!
pn(1− p)N−n (75)

Now, we can make a few approximations, as we know

ln(1− p) ≈ −p, if p≪ 1.
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Thus, ln[(1 − p)N−n] = (N − n)ln(1− p) ≈ −Np + np

Since our n≪ N , the coin being biased, we have:

(1− p)N−n ≈ e−Np

Also, ln(N !/(N−n)!) ≈ NlnN−N−(N−n)ln(N−n)+(N−n) ≈ nlnN

Thus, we have:

N !

(N − n)!
≈ Nn

Substituting all this into the last equation and substituting λ = Np we

get:

P (N, n) ≈ λne−λ

n!
(76)

which is the Poissonian Distribution.

Thus, we use an expected value τ - which we will later discover is the

optical depth - we write P (s) as:

P (s) =
+∞∑

n=0

e−ττn

n!
Pn(s) = e−τ [P0(s) + τP1(s) +

1

2
τ 2P2(s) + ....] (77)

P (s) = e−τ [δ(s) + τP1(s) +
1

2
τ 2P1(s)⊗ P1(s) + ....] (78)

Now, the spectrum of the incident CMB spectrum in terms of the a-

dimensional x that we defined while deriving Kompaneets Equation, is:

I0(x) = 2
(kBT0)

3

(hc)2
x3

ex − 1
(79)

which we arrive at from Planck’s law, since we assume the CMB spectrum

to be Planckian.
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The spectrum of the Comptonised radiation is given by:

I(x) =

∫ +∞

−∞

I0(xe
−s)P (s)ds (80)

Since x = hν ′/kBTe, the term xe−s refers to a value of x = hν/kBTe, i.e

the incident frequency.

2.3 High order τ expansion

In the calculation of the SZ effect in clusters, it is helpful to use an expression

of P (s) in terms of powers of τ . To do this, we will make use of a general

expression for P (s) in terms of a series expansion.

P (s) =

+∞∑

n=0

an(s)τ
n (81)

Using Eqn (77) and substituting a series expansion for e−τ , we can see

that this becomes now:

P (s) =

+∞∑

k=0

(−τ)k
k!

+∞∑

k′=0

(τ)k
′

k′!
Pk′(s) (82)

Now, the general nth order term is obtained by selecting the terms in

the summation that contain the optical depth τ up to the nth power. These

terms are obtained for k′ = n− k and thus we see that:

P (s) =
n∑

k=0

(−τ)k
k!

(τ)(n−k)

(n− k)!
Pn−k(s) =

n∑

k=0

(−1)k(τ)n

k!(n− k)!
Pn−k(s) (83)

Comparing this with Eqn (81) we get

an(s) =
(−1)k

k!(n− k)!
Pn−k(s) (84)

24



Substituting this in Eqn (81) and Eqn (81) in Eqn (80), we see that the

distorted spectrum can itself be written as a series expansion:

I(x) =

+∞∑

n=0

bn(s)τ
n (85)

which can be given by:

I(x) =
(−1)k

k!(n− k)!

∫ +∞

−∞

I0(xe
−s)Pn−k(s)ds (86)

Defining a new function Jn−k(x), we have:

Jn−k(x) =

∫ +∞

−∞

I0(xe
−s)Pn−k(s)ds (87)

Thus, we can see that:

J0(x) =

∫ +∞

−∞

I0(xe
−s)P0(s)ds =

∫ +∞

−∞

I0(xe
−s)δ(s)ds = I0(x) (88)

and

J1(x) =

∫ +∞

−∞

I0(xe
−s)P1(s)ds (89)

and so on.

Now, taking Eqn (78) and substituting it into Eqn (80) we get:

I(x) =

∫ +∞

−∞

I0(xe
−s)e−τ [δ(s) + τP1(s) +

1

2
τ 2P1(s)⊗ P1(s) + ....]ds (90)

For small values of τ , e−τ ≈ (1 − τ). Using this and ignoring terms of

higher powers of τ , we see:

I(x) =

∫ +∞

−∞

I0(xe
−s)(1− τ)[δ(s) + τP1(s)]ds (91)
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I(x) =

∫ +∞

−∞

I0(xe
−s)δ(s)ds+ τ

∫ +∞

−∞

I0(xe
−s)(P1(s)− δ(s)) (92)

Using Eqns (88) and (89) we can see that this is very obviously:

I(x) = J0(x) + τ [J1(x)− J0(x)] (93)

If necessary, higher powers of τ can be calculated, by expanding our e−τ

to a higher degree.

It is useful to write the distorted spectrum in the form:

∆I(x) = 2
(kBTγ)

3

(hc)2
yg̃(x) (94)

Where ∆I(x) ≡ I(x)− I0(x) and y is the Comptonisation parameter and

g̃(x) is some function of x. If we determine g̃(x) we can determine ∆I

2.4 General derivation of g̃(x)

From the previous expression we see that if we substitute the Planckian

spectrum I0(x) of Eqn (79):

g̃(x) =

(
∆I

I0

)
1

y

x3

ex − 1
=

∆i(x)

y
(95)

Where ∆i(x) ≡ ∆I (hc)2

2(KBTγ)3
and y the Comptonisation parameter can be

obtained in general, in terms of the pressure P of the considered electron

population:

y =
σT
mec2

∫

Pdl (96)

From Eqn (88) we see that J0(x) = I0(x) and so Eqn (93) now becomes:
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∆I(x) = τ [J1(x)− J0(x)] (97)

Defining a new function ji(x) = Ji(x)
(hc)2

2(KBT0)3
, Eqn (95) can not be written

as:

g̃(x) =
τ [j1(x)− j0(x)]

y
(98)

This is of course, only up to first order terms of τ . As stated earlier, by

limiting the series expansion at a higher order of τ we can get more accurate

values of g̃(x). Thus, limiting it at the third order in τ we see:

g̃(x) =
1

y

[

τ [j1 − j0] +
1

2
τ 2(j2 − 2j1 + j0) +

1

6
τ 3(j3 − 3j2 + 3j1 − j0)

]

(99)

y depends on the respective case (i.e, if the situation is thermal or non-

thermal etc.), and we will see that it depends on τ . Thus, it is interesting to

see that the first order approximation of g̃(x) in τ is independent of τ .

From this it is obvious that to calculate g̃(x) we need to calculate jn(x)

for which we need to calculate Jn(x) for which we need Pn(x), which as we’ve

already seen is a convolution of P1(x), n times. Thus, we must determine

P1(x).

Using Eqn (73) we can obtain P1(s) if we know the values of fe(p) and

Ps(s; p). Now, fe(p) depends again on whether the situation is thermal or

non-thermal, etc. However, an expression for Pt(t; p) is given by Ensslin &

Kaiser (2000):

Pt(t; p) = −3|1− t|
32p6t

[1+(10+8p2+4p4)t+t2]+
3(1 + t)

8p5
[
3 + 3p2 + p4
√

1 + p2
−3 + 2p2

2p
(2asinh(p)−|ln(t)|)]

(100)
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From the paper we see that the maximal frequency shift is given by:

|ln(t)| ≤ 2asinh(p) (101)

Thus, there can be no frequency shift greater than this and therefore

Pt(t; p) = 0 for |ln(t)| > 2asinh(p). Now, this is related to the Ps(s; p) that

we require simply by:

Ps(s; p)ds = Ps(e
s; p) esds = Pt(t; p) tds (102)

Which can be computed numerically. From this, by substituting a value

for fe(p) and integrating over all p’s from some p1 to p2, we can arrive at

an expression for P1(s) from which Pn(s) can be calculated through repeated

convolution, which after another numerical integral and substitution provides

us with jn(x) which can be substituted in the equation for g̃(x) to obtain it

to desired accuracy.

2.5 The SZ effect for a non-thermal electron popula-

tion

Now, using this general approach that we have derived, we proceed to derive

the exact features of the spectral change produced by a single non-thermal

population of electrons. Let us assume a single power-law electron popula-

tion, which is described by the momentum spectrum:

fe(p; p1, p2, α) = A(p1, p2, α)p
−α p1 ≤ p ≤ p2 (103)

Where A(p1, p2, α) is the normalisation term, given by:

A(p1, p2, α) =
(α− 1)

p1−α
1 − p1−α

2

(104)
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During the calculation of the non-thermal case, we will consider the min-

imum momentum p1 of the electron distribution as a free parameter since it

is not constrained by observational evidence, and the specific value of p2 is

irrelevant for power-law indices α > 2.

Now,

∆Inon−th(x) = 2
(kBTγ)

3

(hc)2
ynon−thg̃(x) (105)

The Comptonisation parameter y is obtained by the expression:

ynon−th =
σT
mec2

∫

Preldl (106)

Now, the energy per unit volume - i.e, Prel of the electron distribution can

be obtained by multiplying the energy of each electron with the momentum

distribution fe(p) and integrating over all p’ s from p1 to p2. The energies of

each electron are obtained by the formula E =
√

(pc)2 + (mec2)2.

Thus:

Prel =
E

V
=

∫ p2

p1

√

(pc)2 + (mec2)2fe(p)dp (107)

This integral can be calculated to find a value that is sort of analogous to

the ’equivalent temperature’ 〈KBTe〉 for a thermal population of electrons.

Now, ynon−th becomes:

ynon−th =
σT
mec2

∫

Preldl = σT
〈KBTe〉
mec2

∫

nedl =
〈kBTe〉
mec2

τ (108)

since τ = σT
∫
nedl, by definition. Note that in this case, τ = τrel.

Substituting this into Eqn (105) we get:

g̃(x) =
∆i

ynon−th
=
τ [j1 − j0]

τ 〈kBTe〉
mec2

≡ mec
2

〈kBTe〉
[j1 − j0] (109)
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Thus, calculating 〈kBTe〉 for our electron population, we substitute it into

the previous equation to get the value of g̃(x) which we then substitute into

Eqn (105) to get the function ∆Inon−th(x). It is interesting to note that in

Eqn (105), the orders of all the terms except ynon−th cancel out, and thus the

order of ∆Inon−th(x) is the same as that of ynon−th, which is around 10−5, as

was expected from Kompaneets Equation.
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Figure 1: The CR-frequency redistribution function P(s;α,p1,p2)over s, with
p1=1 and p2=10
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Figure 2: Momentum spectrum of electron population following single power-
law, with α = 2, 2.5 and 3

As seen from Fig(3) the zero of the non-thermal SZ effect produced by a

single non-thermal population is shifted to a higher frequency as the index α

is decreased. This can be explained from the fact that the number density of

electrons with higher momentum is more for lower index (α) power law spec-

trum (Fig.(2)). Hence, the distortion of CMB spectrum is more from electron

population having lower α. The zero of the non-thermal SZ effect produced

by a single non-thermal population is also shifted to frequencies much higher

than the value x0,th = 3.83, due to large frequency shifts experienced b the

CMB photons scattering the high energy non-thermal electrons
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Figure 3: Change in Intensity produced due to electron population following
single power law, with α =2, 2.5 and 3

2.6 The SZ Effect for a mono-energetic electron pop-

ulation

Again, using the general approach, we proceed to derive the exact features

of the spectral change produced by mono-energetic population of electrons.

Let us assume mono-energetic electron population, which is described by the

momentum spectrum:

fe(p)dp = δ(p− p0) (110)

So, the redistribution function of the CMB photons scattered once by

such an electron population is given by:

32



P1(s) =

∫ ∞

0

dpδ(p− p0)Ps(s; p) (111)

Thus,

P1(s) = Ps(s; p0) (112)

Once, P1(s) is known, it is possible to to evaluate the probability that a

frequency change s is produced by n scattering, and hence jn(x) and finally

g(x).
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Figure 4: j(x)-i(x) for mono-energetic electron spectra with different p’s

The curves given below give the spectral change per electron of a partic-

ular momentum. It is noted that the absorption feature saturates to −i(x)
for p > 10.
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2.7 Conclusion: Comparison of distortion by thermal

and non-thermal population of electron having same

energy density

In this section, we’ve compared the distortion produced by thermal and non-

thermal population(single power law, with α = 2.5) of electrons in a spherical

volume. Let us take, E = 1060ergs, and the radius of the spherical volume

enclosing this electron population R = 100Kpc. Following is the plots com-

paring there corresponding spectral shape g(x).
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Figure 5: Comparison of spectral shape g(x) for thermal and non-thermal
population of electron.

P =
E

V
(γ − 1)

P = nkBTe → for thermal

P = n < kBT̃e >→ for non− thermal

yth/non−th =
σT
mec2

∫

Pth/non−th dl
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Taking σT = 6.65× 10−29m2, 3× 1022m, and γth = 5
3
; γnon−th = 4

3
, we get,

yth =
2

3
(
E

V
)
σT
mec2

ynon−th =
1

3
(
E

V
)
σT
mec2

∴ ∆Ith = ythg(x)th

∆Inon−th = ynon−thg(x)non−th

Also we plotted, ∆I Vs x, and as can be seen from the plot that the

amplitude of ∆I in case of thermal population is more than that of non-

thermal one. This can be explained from the fact that for thermal case(i.e;

Maxwellian) the distribution of electrons is limited to a small range of energy.

While for non thermal distribution the electrons are distributed over large

energy range. So, for same energy density, the distortion in the CMB spec-

trum will be more from the thermal population as compared to non-thermal

one.
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Figure 6: Comparison of ∆I for thermal and non-thermal population of
electron.
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