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Abstract

This report attempts to consolidate everything I have learnt so far about
string theory. It starts with the motivation behind string theory in section
1, followed by a brief description of certain terms that one comes across.
In the next section, the BPS condition for charged macroscopic strings for
the case α = −β has been rederived. We go on to find the mass charge
relationship, hence showing the BPS nature of the solution for the case α = β.
In Section 3, we have investigated the supersymmetry conditions using the
Killing equation.
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1 Introduction

The ultimate goal of mankind has always been to find a single unified theory,
starting with the unification of electricity and magnetism to the theory of gen-
eral relativity (special relativity and gravity) and further followed by the uni-
fication of special relativity and quantum mechanics(quantum field theory).
The next challenge posed before the mankind is the unification of quantum
mechanics and general relativity.But the standard procedures of quantization
of fields do not work when applied to gravity, non-renormalizability being
one of the issues in this regard.String theory stands as a strong candidate
in answering this challenge.It was eventually realized that if the relativis-
tic closed strings are quantized, massless states emerge which can be gravi-
tons.[zweibach13]. Although, this theory cannot be experimentally tested in
the near future because the present day accelerators are incapable of resolv-
ing a length of the order of 10−33cm. size of strings, it has been successful in
resolving few difficulties.
String theory assumes that the elementary particles are one dimensional ex-
tended objects-strings, instead of being point like. the different vibrational
modes of these strings being identified as different particles.The dynamics of
strings is governed by Nambu Goto action given by:

SNG = − 1

2πα′

∫

dτ dσ
√
−h (1)

which is written analogous to the action that governs the EOM of point
like particles. String theory is itself divided into several different theories-
bosonic, supertring, type Ia, type Ib, type IIa, type IIb, heterotic string
theory.However one theory can be transformed into other by making use of
two duality transformation.

1.1 String Dualities

1) T-duality (Target Space Duality):
Maps weak coupling region of one theory to the weak coupling region of
another theory.
Bosonic string theory compactified on radius ‘r′ and ‘1/r′ are equivalent.
Type IIa string theory compactified on a circle of radius ‘r′ is dual to type
IIb theory compactified on a circle of radius ‘1/r′.
2) S-duality (Self Duality):
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A theory with coupling constant ‘g′ is S-dual to some other theory with
coupling constant ‘1/g′

There is third kind of duality known as U-duality which is a combination
of T duality and S-duality . It relates small volume limit of some theory to
large coupling limit of some other theory.

1.2 Superstring Theories

The five consistent superstring theories are:
1)The type I string has one supersymmetry in the ten-dimensional sense

(16 supercharges). This theory is special in the sense that it is based on un-
oriented open and closed strings, while the rest are based on oriented closed
strings.
2)The type II string theories have two supersymmetries in the ten-dimensional
sense (32 supercharges). There are actually two kinds of type II strings called
type IIA and type IIB. They differ mainly in the fact that the IIA theory is
non-chiral (parity conserving) while the IIB theory is chiral (parity violat-
ing).
3)The heterotic string theories are based on a peculiar hybrid of a type I
superstring and a bosonic string.

1.3 D Branes

The string end points are attached to some physical objects. These objects
are what we call as D-branes, where the letter D stand for ‘Dirichlet’.The
name itself suggests that a set of Dirichlet boundary conditions have to be
specified by the string end points. These objects are characterized by their
dimensionality, more precisely, by the number of spatial dimensions that they
have.In general, a Dp brane is an object with p-spatial dimensions.[5]

1.4 Charge associated with strings

As we know that a particle when couples to a Maxwell field(Aµ), carries
electric charge. Similarly, strings when couple to a different kind of field,
known as the Kalb-Ramond field (Bµν), carries charge. The complete action
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for both the system are as follows:

S = −m
∫

P

ds+

∫

P

Aµ(x) dx
(µ) − 1

k20

∫

dDxFµνF
µν (2)

Similarly,

S = Sstr −
1

2

∫

dτ dσBµν(X(τσ))
∂X [µ

∂τ

∂Xν]

∂σ
− 1

6k2

∫

dDxHµνρH
µνρ (3)

where, Fµν and Hµνρ are the field strengths for Maxwell field and Kalb Ra-
mond field respectively. In both the above equations first term is the parti-
cle/string action, second term is the action due to interaction and last term
is the action due to field.

1.5 D Brane Charges

A point particle, having one dimensional world line, is coupled to one index
massless gauge field and a string having 2 dimensional world sheets is coupled
to a two index antisymmetric, massless Kalb Ramond gauge field. Similarly,
a D(p) Brane having (p+1) dimensional world volume is electrically coupled
to (p+1) dimensional RR fields. However, this is true only for type IIA and
type IIB closed superstring theories. In Bosonic closed string theory, the D
branes are not charged. bart

IIA : Aµ(D0), Aµνρ(D2) (4)

IIB : Aµν(D1), Aµνρσ(D3)
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2 Charged Macroscopic Strings

We start with the Charged Macroscopic string solution given in [1] with
D = 9 and restrict ourselves to specific value of parameters α and β

2.1 α = −β solutions

The metric in ten dimensions for α = −β is given by :

G =













1+Ccosh2α
r5

1+ C

r5

C
r5

coshαsinhα
(1+ C

r5
)

0

C
r5

coshαsinhα
(1+ C

r5
)

− [1−Csinh2α
r5

]

(1+ C

r5
)

0

0 0 1
(1+ C

r5
)













(5)

and the antisymmetric NS-NS Bµν

B =







0 0 −Csinhα
(r5+C)

0 0 −Ccoshα
(r5+C)

Csinhα
(r5+c)

Ccoshα
(r5+c)

0






(6)

and the dilaton is given by:

φ(10) = − ln

(

1 +
C

r5

)

(7)

2.1.1 Generalization of D0-D2 bound states

A D-string in 10 dimensions is obtained from the above solution by appli-
cation of S-Duality. The metric, antisymmetric Bµν and dilaton is given
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by:

dS2 = −
1 − C

r5
sinh2 α

√

1 + C
r5

(dt)2 +
1 + C

r5
cosh2 α

√

1 + C
r5

(dx9)2 +

2 C
r5
sinhα coshα
√

1 + C
r5

dx9dt+
1

√

1 + C
r5

(dx8)2 +

√

1 +
C

r5

7
∑

i=1

(dxi)2,

B
(2)
98 = B98, B

(2)
t8 = Bt8

eφ
(10)
b = 1 +

C

r5
(8)

Next step is to apply rotation in (x9 − x8) plane by an angle φ. So, we get,

dS2 = −
1− C

r5
sinh2 α

√

1 + C
r5

(dt)2 +
1 + C

r5
cosh2 α cos2 φ
√

1 + C
r5

(dx9)2 +

1 + C
r5
cosh2 α sin2 φ
√

1 + C
r5

(dx8)2 +
2 C
r5
sinhα coshα cos φ
√

1 + C
r5

dx̃9dt−

2 C
r5
sinhα coshα sinφ
√

1 + C
r5

dx̃8dt−
2 C
r5
coshα2 sinφ cosφ
√

1 + C
r5

dx̃9dx̃8 +

√

1 +
C

r5

7
∑

i=1

(dxi)2,

B
(2)

8̃t
=

C

C + r5
coshα cosφ

B
(2)

9̃t
=

C

C + r5
coshα sinφ

B
(2)

9̃8̃
= − C

C + r5
sinhα (9)
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The above metric is T dualized along x̃9 direction. and one obtains the
following metric, NS-NS Bµν , 1-form and 3-form fields of type IIA theory.

dS2 = −
1 + C

r5
(1− cosh2 α sin2 φ)

√

1 + C
r5
(1 + C

r5
cosh2 α cos2 φ)

dt2 +

√

1 + C
r5

1 + C
r5
cosh2 α cos2 φ

(dx̃9)2 +

1 + cosh2 α
√

1 + C
r5
(1 + C

r5
cosh2 α cos2 φ)

(dx̃8)2 −
C
r5
sinhα coshα sinφ

√

1 + C
r5
(1 + C

r5
cosh2 α cos2 φ)

dtdx̃8

+

√

1 +
C

r5

7
∑

i=1

(dxi)2,

At =
C sin φ coshα

r5 + C
, A8̃ = −C sinhα

(r5 + C)
,

B9̃t = −
C
r5
sinhα coshα cos φ

1 + C
r5
cosh2 α cos2 φ

, B9̃8̃ =
C
r5
sinφ cosφ cosh2 α

1 + C
r5
cosh2 α cos2 φ

,

eφ
(10)
b =

(1 + C
r5
)(3/2)

1 + C
r5
cosh2 α cos2 φ

(10)
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2.1.2 Generalization of D1- D3 bound state solution

We obtain a generalization of D1-D3 bound solution by T- dualizing the
above generalized bound state solution along x7.

dS2 = −
1 + C

r4
(1− cosh2 α sin2 φ)

√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

dt2 +

√

1 + C
r4

1 + C
r4
cosh2 α cos2 φ

(dx̃9)2 +

1 + cosh2 α
√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

(dx̃8)2 +
1

√

1 + C
r4

(dx7)2 −

C
r4
sinhα coshα sinφ

√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

dtdx̃8 +

√

1 +
C

r4

6
∑

i=1

(dxi)2,

A
(2)
7t =

C sinφ coshα

r4 + C
, A

(2)

78̃
− C sinhα

(r4 + C)
,

A
(4)

9̃t8̃7
= −

( C
r4
coshα cosφ)

2(1 + C
r4
)

[

1 +
1 + C

r4

1 + C
r4
cosh2 α cos2 φ

]

,

B9̃t = −
C
r4
sinhα coshα cos φ

1 + C
r4
cosh2 α cos2 φ

, B9̃8̃ =
C
r4
sinφ cosφ cosh2 α

1 + C
r4
cosh2 α cos2 φ

,

eφ
(10)
b =

1 + C
r4

1 + C
r4
cosh2 α cos2 φ

(11)

2.1.3 Mass Charge Relationship

The D1 and D3 charge densities carried by the above bound state solution
are given by:

Q1 = 4C coshα sinφ,

Q2 = −4C coshα cosφ,

Q3 = −4C sinhα coshα cosφ,

P = −4C sinhα coshα sinφ (12)

where, Q1, Q2, Q3 and P are the charge associated with A
(2)
7t , A

(4)

9̃t8̃7
, B9̃t and

Gt8̃ respectively. In order to find the ADM mass density, the deformation of
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the Einstein’s metric above flat background.

h77 =
C

r4

(

−3

4
+

1

4
cosh2 α cos2 φ

)

(13)

h8̃8̃ =
C

r4

(

cosh2 α− 3

4
cosh2 α cos2 φ− 3

4

)

h9̃9̃ =
C

r4

(

1

4
− 3

4
cosh2 α cos2 φ

)

hij =
C

r4

(

1

4
+

1

4
cosh2 α cos2 φ

)

The mass density is calculated using the following equation

m =

∫ 9−p
∑

i=1

ni

[

9−p
∑

j=1

(∂jhij − ∂ihjj)−
p
∑

a=1

∂ihaa

]

r8−pdΩ (14)

which is given as
m1,3 = 4C cosh2 α (15)

Therefore, we get
m2

1,3 = Q2
1 +Q2

2 +Q2
3 + P 2 (16)

showing the BPS nature of the D1-D3 bound state solution.
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2.2 α = β solutions

In this section, we start with the charged macroscopic string solution given
in [1] and investigate the particular solution (α = β). To obtain the solution
in ten dimension, one has to start with the nine dimensional solution(D = 9)
and decompactify it using the Kaluza Klein compactification.[1] For this case
the ten-dimensional backgrounds is given as[2]:





ĝ 0 b̃
0 −Gtt 0

b̃ 0 G88 + b̃2/g̃



 (17)

where, the modulus field g̃ is given as:

g̃ =
1 + C

r5

1 + C cosh2 α/r5
(18)

and b̃ as

b̃ =
C sinhα

r5 + C cosh2 α
(19)

and the metric component Gtt and G88 as

Gtt = − 1

1 + C
r5
cosh2 α

(20)

G88 =
1

1 + C
r5

(21)

The components of the gauge field are

Ã1
t = 0, Ã1

8 =
C sinhα

2(r5 + C)
(22)

Ã2
t =

−C sinhα coshα

2(r5 + C cosh2 α)
, Ã2

8 = 0 (23)

and dilaton is given by the expression :

φ(10) = − ln(1 +
C cosh2 α

r5
) (24)

The antisymmetric tensor Bµν is represented as:

C

r5 + C cosh2 α





0 − sinhα coshα 0
sinhα coshα 0 − coshα

0 coshα 0



 (25)

14



2.2.1 Generalization of (D0 - D2) bound states

Using the delocalized elementary string given in section 2.1, a delocalized
D-string in D = 10 can be generated by an application of S-duality trans-
formation The metric, antisymmetric 2-form (Bµν) and the dilaton for the
delocalized D-string solution are given by:

ds2 = − 1
√

1 + C cosh2 α
r5

(dt)2 +
1 + C

r5
√

1 + C cosh2 α
r5

(dx9)2 +
2 C
r5
sinhα

√

1 + C cosh2 α
r5

dx8dx9

+
1 + C sinh2 α

r5
√

1 + C cosh2 α
r5

(dx8)2 +

√

1 +
C cosh2 α

r5

7
∑

i=1

(dxi)2

(26)

B
(2)
9t = B9t =

− C
r5
sinhα coshα

1 + C cosh2 α
r5

,

B
(2)
8t = B8t =

− C
r5
coshα

1 + C cosh2 α
r5

,

eφb = 1 +
C cosh2 α

r5
(27)

The next step is rotation in (x8 − x9) plane by an angle φ

[

x9

x8

]

=

[

cos φ − sin φ
sinφ cosφ

]

×
[

x̃9

x̃8

]

(28)

So, we get

dx9 = d̃x
9
cosφ− d̃x

8
sinφ (29)

dx8 = d̃x
9
sinφ+ d̃x

8
cosφ (30)

Thus in the rotated configuration,

G̃99 = G99 cos
2 φ+G88 sin

2 φ+G98 cosφ sinφ (31)

G̃88 = G88 cos
2 φ+G99 sin

2 φ−G98 cos φ sinφ (32)

G̃98 = −G99 cos φ sinφ+G88 cosφ sinφ+G98
cos2 φ− sin2 φ

2
(33)
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Thus,

G̃99 =
1 + C

r5
(cosφ+ sinhα sinφ)2
√

1 + C cosh2 α
r5

(34)

G̃88 =
1 + C

r5
(sinφ− sinhα cosφ)2
√

1 + C cosh2 α
r5

(35)

G̃98 = −
2 C
r5
(cosφ+ sinhα sinφ) (sin φ− sinhα cosφ)

√

1 + C cosh2 α
r5

(36)

+
C
r5
sinhα(cos2 φ− sin2 φ)
√

1 + C cosh2 α
r5

and the antisymmetric 2-form (Bµν) after rotation is given as:

B̃9t = B9t cos φ+B8t sin φ (37)

=
C coshα(sinφ− sinhα cosφ)

r5 + C cosh2 α

B̃8t = −B9t sinφ+B8t cosφ (38)

=
C coshα(cosφ+ sinhα sinφ)

r5 + C cosh2 α

The rotated metric looks like this :

ds2 = − 1
√

1 + C cosh2 α
r5

(dt)2 −
2C
r5

(cosφ+ sinhα sinφ) (sin φ− sinhα cosφ)
√

1 + C cosh2 α
r5

dx̃8dx̃9

+
1 + C

r5
(cos φ+ sinhα sin φ)2
√

1 + C cosh2 α
r5

(dx̃9)2 +
1 + C

r5
(sinφ− sinhα cos φ)2
√

1 + C cosh2 α
r5

(dx̃8)2

√

1 +
C cosh2 α

r5

7
∑

i=1

(dxi)2 (39)
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Next, we apply T-duality along x9̃ using the prescription given in [4]:

G
(a)
99 =

1

G̃99

(40)

⇒ G
(a)
99 =

√

1 + C cosh2 α
r5

1 + C
r5
(cos φ+ sinhα sin φ)2

G
(a)
88 = G̃88 −

G̃98G̃98

G̃99

(41)

⇒ G
(a)
88 =

√

1 + C cosh2 α
r5

1 + C
r5
(cos φ+ sinhα sin φ)2

G
(a)
00 = G̃00 +

B2
9t

G̃99

(42)

⇒ G
(a)
00 = − 1

√

1 + C cosh2 α
r5

The metric is :

ds2 = − 1
√

1 + C cosh2 α
r5

(dt)2 +

√

1 + C cosh2 α
r5

1 + C
r5
(cos φ+ sinhα sin φ)2

(dx9)2

+

√

1 + C cosh2 α
r5

1 + C
r5
(cosφ+ sinhα sin φ)2

(dx8)2

+

√

1 +
C cosh2 α

r5

7
∑

i=1

(dxi)2 (43)

A
(a)
t = B̃9t (44)

⇒ A
(a)
t =

C coshα(sinφ− sinhα cosφ)

r5 + C cosh2 α

17



A
(a)
9t8 = B̃t8 +

B̃9tG̃98

G̃99

(45)

⇒ A
(a)
9t8 =

C coshα(cosφ+ sinhα sinφ)

r5 + C cosh2 α

B
(a)
98 = −G̃98

G̃99

(46)

⇒ B
(a)
98 =

C
r5
(cosφ+ sinhα sinφ) (sin φ− sinhα cosφ)

1 + C
r5
(cosφ+ sinhα sin φ)2

The dilaton is given as:

e2φa =
e2φb

G̃99

(47)

⇒ e2φa =
(1 + C

r5
)
3
2

1 + C
r5
(cosφ+ sinhα sinφ)2

2.2.2 Generalization of (D1-D3) bound states

A generalization of D1 − D3 is obtained by applying T-duality along x7on
the generalized D0−D2 solutions. The metric is given as:

ds2 = − 1
√

1 + C cosh2 α
r4

(dt)2 +

√

1 + C cosh2 α
r4

1 + C
r4
(cos φ+ sinhα sin φ)2

(dx9)2

+

√

1 + C cosh2 α
r4

1 + C
r4
(cosφ+ sinhα sin φ)2

(dx8)2 +
1

√

1 + C cosh2 α
r4

(dx7)2

+

√

1 +
C cosh2 α

r4

6
∑

i=1

(dxi)2 (48)

18



A7t = A
(a)
t (49)

⇒ A7t =
C
r4
coshα(sinφ− sinhα cosφ)

1 + C
r4
cosh2 α

A9t87 = A9t8 −
1

2
A

(a)
t B

(a)
98 (50)

⇒ A9t87 =
C
r4
coshα(sinφ sinhα + cosφ)

1 + C
r4
cosh2 α

(

1 +
C
r4
(sinφ− sinhα cosφ)

1 + C
r4
(cosφ+ sinhα sinφ)2

)

B98 = B
(a)
98 (51)

⇒ B98 =
C
r5
(cosφ+ sinhα sinφ) (sin φ− sinhα cosφ)

1 + C
r5
(cosφ+ sinhα sinφ)2

The dilaton is given as:

e2φb =
e2φa

G̃77

(52)

⇒ e2φb =
(1 + C

r4
)

1 + C
r4
(cosφ+ sinhα sinφ)2

2.2.3 Mass Charge Relationship

The next step is to verify the BPS condition to establish the 1/2 supersym-
metry of the bound state. All the non-zero charge arise from the fields that
have temporal part, i.e., in the above case charges will be given by A7t and
A9t87 .

Q1 = 4C coshα(sinφ− sinhα cosφ) (53)

Q2 = 4C coshα(cosφ+ sinhα sinφ) (54)

(55)

The deformation of the Einstein metric above flat background is computed
to find the ADM mass density

h77 =
C

r4

(

−1− 1

2
cosh2 α +

1

4
(cosφ+ sinφ sinhα)2

)

(56)
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h88 =
C

r4

(

1

2
cosh2 α− 1

4
− 3

4
(cosφ+ sinφ sinhα)2

)

(57)

h99 =
C

r4

(

1

2
cosh2 α− 1

4
− 3

4
(cosφ+ sinφ sinhα)2

)

(58)

hij =
C

r4

(

−1 +
1

2
cosh2 α +

1

4
(cosφ+ sinφ sinhα)2

)

δij (59)

The mass density of bound state is calculated using ADM mass formula

given in (14)
m(1,3) = 4C cosh2 α (60)

We therefore have,
m2

(1,3) = Q2
1 +Q2

2 (61)

showing the BPS nature of the bound state.
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3 Killing Equations

In this section we have studied killing equations for strings in ten dimensions
and verified that the solutions are consistent with 1/2 supersymetry. Later,
we have also shown the supersymmetry condition for D1-D3 bound states of
charged macroscopic strings for the cases α = −β. The spinor Killing equa-
tion for NS-NS fields, results from the supersymmetry variations in string
metric [2]:

δψM = ∂Mη +
1

4
ωM̂N̂
M ΓM̂N̂η −

1

8
HM̂N̂

M ΓM̂N̂η
∗ (62)

δλ = (∂Mφ
(10))γMη∗ − 1

6
HMNPγ

MNPη, (63)

where ψM is the ten dimensional gravitino, λ is the dilatino and η = (ǫL+ιǫR)
are the supersymmetry parameters. M, N are the general coordinate indices
from 0 to 9 and M̂ ,N̂ are the Lorentz indices. The first equation is sep-
arated into two equations. The indices (9, 0, 8) are denoted by µ and the
corresponding lorentz indices by µ̂. The coordinates transverse to the string
(i.e. 0 to 7) are represented by m’s and the lorentz indices by m̂ The ten di-
mensional Lorentzian metric is of the form ηM̂N̂ ≡ diag(1,−1, 1, ...., 1) which
implies, ηµ̂ν̂ = diag(1,−1, 1) and ηm̂n̂ = δm̂n̂. Since the background depends
only on the transverse coordinates (here, m’s) , the gravitino supersymmetry
variation (3) can be written as:

δψm = ∂mη +
1

4
ωµ̂ν̂
m Γµ̂ν̂η −

1

8
H µ̂ν̂

m Γµ̂ν̂η
∗, (64)

δψµ =
1

2
ων̂m̂
µ Γν̂m̂η −

1

4
H ν̂m̂

µ Γν̂m̂η
∗ (65)

3.1 Supersymmetry of β = 0 solution

The ten dimensional solution [2]for this case is given as :

ds2 =
1

cosh2 α
2
e−E − sinh2 α

2

(−dt2 + (dx8)2) +
sinh2 α

2
(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

(dt+ dx8)2

+
sinhα(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

dx9(dt+ dx8) +

7
∑

i=1

(dxi)2 + (dx9)2 (66)
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The antisymmetric B is given as :

B8t =
cosh2 α

2
(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

, (67)

B9t = −sinhα

2

(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

= B98 (68)

The dilaton is given as:

φ(10) = −ln
(

cosh2 α

2
e−E − sinh2 α

2

)

(69)

For algebraic simplicity, the metric G and the antisymmetric tensor B are
written in the form of 3× 3 matrices.

G =

(

1 b̂

b̂T G+ b̂b̂t

)

(70)

B =

(

0 −b̂
b̂T B

)

(71)

In the above matrices,

G ≡
(

−g + a a
a g + a

)

(72)

B ≡
(

0 g − 1
1− g 0

)

(73)

b =
1

cosh2 α
2
e−E − sinh2 α

2

(74)

a =
sinh2 α

2
(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

(75)

g =
sinhα

2

(e−E − 1)

cosh2 α
2
e−E − sinh2 α

2

(76)
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and b̂ = b(1, 1) is 2-dimensional row vector. The vielbien is calculated
using the equation

EηET = G (77)

The vielbien E is given by:

E =

(

1 0

b̂T Ê

)

(78)

and

Ê ≡ 1√
g − a

(

g − a 0
−a g

)

(79)

The spin connection matrix ωµ̂ν̂
m = 1

2
(ETG−1E,m − ET

,mG−1E) [2] in the
L.H.S of killing equation is given by:







0 b,m√
g−a

− b,m√
g−a

− b,m√
g−a

0 −g,m
g

b,m√
g−a

g,m
g

0






(80)

And H µ̂ν̂
m = (ETG−1B,mG

−1E) [2]is given by matrix







0 b,m√
g−a

− b,m√
g−a

− b,m√
g−a

0 −g,m
g

+ E,m
b,m√
g−a

g,m
g

− E,m 0






(81)

From the equation no. (3)(81) 1/2 supersymmetry condition is found as:

(ǫL − ιǫR) = −[Γ0̂8̂ + tanh
α

2
eE/2(Γ9̂0̂ − Γ9̂8̂)](ǫL + ιǫR) (82)

3.2 Supersymmetry of α = −β 6= 0 solutions

The metric in ten dimensions for α = −β is given by :

G =













1+Ccosh2α
r5

1+ C

r5

C
r5

coshαsinhα
(1+ C

r5
)

0

C
r5

coshαsinhα
(1+ C

r5
)

− [1−Csinh2α
r5

]

(1+ C

r5
)

0

0 0 1
(1+ C

r5
)













(83)
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B =







0 0 −Csinhα
(r5+C)

0 0 −Ccoshα
(r5+C)

Csinhα
(r5+c)

Ccoshα
(r5+c)

0






(84)

Again, using the same procedure we write down the metric in the following
form for algebraic simplicity

G =

(

G 0
0 g

)

(85)

In the above matrix,

G =

(

g + k
√
kl√

kl −g + l

)

(86)

where,

g =
1

1 + C
r5

k =
C cosh2 α

r5

1 + C
r5

l =
C sinh2 α

r5

1 + C
r5

Using EηET = G, we get the vielbien as;

E =

(

Ê 0
0

√
g

)

(87)

and Ê is given by;

Ê =

( √

kl
g−l

+ g + k −
√

kl
g−l

0
√
g − l

)

(88)

Now, the matrix H µ̂ν̂
m is calculated using the expression given in [2]

H µ̂ν̂
m =

∂m[1 +
C
r5
]

(1 + C
r5
)2

×







0 0 − sinhα
G88

√
Gtt

0 0 coshα√
GttG88

sinhα
G88

√
Gtt

− coshα√
GttG88

0






(89)
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From the dilatino variation equation, we arrive at the 1/2 supersymmetry
condition.

(ǫL−ιǫR) =



− coshα
√

1− C sinh2 α
r5

Γ0̂8̂ + sinhα

√

1 + C
r5

1− C sinh2 α
r5

Γ9̂8̂



 (ǫL+ιǫR) (90)

3.3 Supersymmetry conditions for D1-D3 bound state
solution for charged macroscopic strings for α = −β

The following is the D1-D3 bound state solution for the case α = −β

dS2 = −
1 + C

r4
(1− cosh2 α sin2 φ)

√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

dt2 +

√

1 + C
r4

1 + C
r4
cosh2 α cos2 φ

(dx̃9)2 +

1 + cosh2 α
√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

(dx̃8)2 +
1

√

1 + C
r4

(dx7)2 −

C
r4
sinhα coshα sinφ

√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

dtdx̃8 +

√

1 +
C

r4

6
∑

i=1

(dxi)2,

A
(2)
7t =

C sin φ coshα

r4 + C
, A

(2)

78̃
− C sinhα

(r4 + C)
,

A
(4)

9̃t8̃7
= −

( C
r4
coshα cosφ)

2(1 + C
r4
)

[

1 +
1 + C

r4

1 + C
r4
cosh2 α cos2 φ

]

,

B9̃t = −
C
r4
sinhα coshα cos φ

1 + C
r4
cosh2 α cos2 φ

, B9̃8̃ =
C
r4
sinφ cosφ cosh2 α

1 + C
r4
cosh2 α cos2 φ

,

eφ
(10)
b =

1 + C
r4

1 + C
r4
cosh2 α cos2 φ

(91)

G =

(

g 0
0 G

)

(92)

In the above matrix,

G =

(

−g + k −
√
kl
2

−
√
kl
2

g + l

)

(93)
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where,

g =
1 + C

r5
√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

k =
C
r5
cosh2 α sin2 φ

√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

l =
C
r5
sinh2 α

√

1 + C
r4
(1 + C

r4
cosh2 α cos2 φ)

Using EηET = G, we get the vielbien as;

E =

( √
g 0

0 Ê

)

(94)

and Ê is given by;

Ê =

( √
g − k 0

1
2

√

kl
g−k

√

kl
4(g−k)

+ g + l

)

(95)

The supersymmetry variation of dilatino and gravitini fields of type IIB
supergravity in ten dimensions , in string frame is given by []:

δλ± =
1

2
(Γµ∂µφ∓ 1

12
ΓµνρHµνρ)ǫ± +

1

2
eφ(±ΓMF

(1)
M +

1

12
ΓµνρF (3)

µνρ)ǫ∓ (96)

δψ±
µ =

[

∂µ +
1

4
(ωµâb̂ ∓

1

2
Hµâb̂)Γ

âb̂

]

ǫ± +

1

8
eφ
[

∓ΓλF
(1)
λ − 1

3!
ΓλνρF

(3)
λνρ ∓

1

2.5!
ΓλνραβF

(5)
λνραβ

]

Γµǫ∓ (97)

where, Hµνρ is the field strength associated with the NS-NS Bµν , Fµνρ and
Fλνραβ are the strengths associated with 2-form and 4-form A’s respectively.

Fµνρ = ∂[µAνρ] (98)

Hµνρ = ∂[µBνρ]

Fλνραβ = ∂[λAνραβ]
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F7tr = ∂r

[

C
r4
sin φ coshα

1 + C
r4

]

(99)

=
∂r
(

C
r4

)

sinφ coshα

1 + C
r4

F78r = ∂r

[

C
r4
sinhα

1 + C
r4

]

(100)

=
−∂r

(

C
r4

)

sinhα

1 + C
r4

H9tr = ∂r

[

−
C
r4
sinhα coshα cosφ

1 + C
r4
cosh2 α cos2 φ

]

(101)

= −
∂r(

C
r4
sinhα coshα cos φ)

(1 + C
r4
cosh2 α cos2 φ)2

H98r = ∂r

[

C
r4
sinφ cosφ cosh2 α

1 + C
r4
cosh2 α cos2 φ

]

(102)

=
∂r(

C
r4
sinφ cosφ cosh2 α)

(1 + C
r4
cosh2 α cos2 φ)2

Using the dilatino variation equation we calculate the supersymmetry con-
dition for the string

−Γrǫ± ±
1 + C

r4

2(1 + C
r4
cosh2 α cos2 φ)(1− C

r4
cosh2 α cos2 φ)

(Γr9t sinhα coshα cosφ

+Γr98 sinφ cosφ cosh2 α)ǫ± +
1

2(1− C
r4
cosh2 α cos2 φ)

(Γr7t sinφ coshα−

Γr78 sinhα)ǫ∓ = 0 (103)

From the above, we get the following conditions.

Γr9tǫ± = 0 (104)

(1− Γ8t sinφ cothα)ǫ± = 0 (105)

ǫ± =
Γ7 coshα

2(1− C
r4
cosh2 α cos2 φ)

(

Γt sinφ− Γ8 tanhα
)

ǫ∓ (106)
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4 Appendix

4.1 T-duality map from type IIA to IIB theory

e2φb =
e2φa

Gx̃x̃

Jx̃µ = −
B

(a)
x̃µ

Gx̃x̃

Jx̃x̃ =
1

Gx̃x̃

B
(b)
x̃µ = −Gx̃µ

Gx̃x̃

A
(2)
x̃µ = A(1)

µ − A
(1)
x̃ Gx̃µ

Gx̃x̃

B(b)
µν = B(a)

µν + 2
Gx̃µB

(a)
νx̃

Gx̃x̃

Jµν = Gµν −
Gx̃µGx̃ν − B

(a)
x̃µB

(a)
x̃ν

Gx̃x̃

A(2)
µν = A

(3)
µνx̃ − 2AµB

(a)
νx̃ + 2

Gx̃µB
(a)
νx̃ A

(1)
x̃

Gx̃x̃

A
(4)
µνρx̃ = A(3)

µνρ −
3

2

(

AµB
(a)
νρ − Gx̃µB

(a)
νρ A

(1)
x̃

Gx̃x̃

+
Gx̃µA

(3)
νρx̃

Gx̃x̃

)

where x̃ is the Killing coordinate which is T-dualized and µ, ν, ρ 6= x̃. [4]
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4.2 T-duality map from type IIB to IIA theory

e2φa =
e2φb

Jx̃x̃

Gx̃x̃ =
1

Jx̃x̃

B
(a)
x̃µ = −Jx̃µ

Jx̃x̃

Gx̃µ = −
B

(b)
x̃µ

Jx̃x̃

A(1)
µ = A

(2)
x̃µ + χB

(b)
x̃µ

A
(3)
x̃µν = A(2)

µν + 2
A

(2)
x̃µJνx̃

Jx̃x̃

B(a)
µν = B(b)

µν + 2
B

(b)
x̃µJνx̃

Jx̃x̃

Gµν = Jµν −
Jx̃µJx̃ν −B

(b)
x̃µB

(b)
x̃ν

Jx̃x̃

A(3)
µνρ = A

(4)
µνρx̃ +

3

2

(

A
(2)
x̃µB

(b)
νρ − B

(b)
x̃µA

(2)
νρ − 4

B
(b)
x̃µA

(2)
x̃ν Jρx̃

Jx̃x̃

)

where x̃ is the Killing coordinate which is T-dualized and µ, ν, ρ 6= x̃. [4]
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4.3 Kaluza Klein compactification mechanism

Gab = G
(10)
[a+(D−1),b+(D−1)]

Bab = B
(10)
[a+(D−1),b+(D−1)]

A(a)
µ =

1

2
GabG

(10)
[b+(D−1),µ]

A(a+(10−D))
µ =

1

2
B

(10)
[a+(D−1),µ] −BabA

(b)
µ

Gµν = G(10)
µν −G

(10)
[a+(D−1),µ]G

(10)
[b+(D−1),ν]G

ab

Bµν = B(10)
µν − 4BabA

(a)
µ A(b)

ν − 2(A(a)
µ A(a+(10−D))

ν − A(a)
ν A(a+(10−D))

µ )

Φ = Φ(10) − 1

2
ln detG

where , 1 ≤ a, b ≤ 10−D and 0 ≤ µ, ν ≤ (D − 1) [1]
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