Pneumonia detection from chest X-rays using deep neural networks

Shivangi Prasad (Ph.D., Medium Energy Physics, UIUC)

Course project (AI for healthcare)

7th August 2020

Goal

- To assist radiologists in prioritizing which x-ray scans require more immediate attention.
- Scans with detected Pneumonia can be addressed earlier than the rest.

Dataset

- NIH chest x-ray data
 - https://www.nih.gov/news-events/news-releases/nih-clinical-centerprovides-one-largest-publicly-available-chest-x-ray-datasets-scientificcommunity
- 112,000 x-rays with disease labels (radiology report) for ~30,000 patients
- Training/Validation data: The data was split as 80/20 for training and validation data

Sample images

Exploratory data analysis (age distribution)

Exploratory data analysis (gender distribution)

Exploratory data analysis (intensity distribution)

Train/Validation split (gender distribution)

Train/Validation split (Age distribution)

Flowchart

Model

Training loss and accuracy

Precision-recall curve

		Actual	
		Positive	Negative
cted	Positive	True Positive	False Positive
Predicted	Negative	False Negative	True Negative

Precision = True Positives

True Positives

True Positives

Recall = True Positives

True Positives + False Negatives

Evaluation metric (F1 score)

$$F1 = 2 * \frac{precision * recall}{precision + recall}$$

The model achieved an F1 score of 0.4, this is higher than the mean radiologist F1 score =0.387 [1]

[1] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... Ng, A. Y. (2017). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. Retrieved from http://arxiv.org/abs/1711.05225

Summary

- The model can assist radiologists in prioritizing which x-ray scans require more immediate attention.
- Already performing at the level of radiologists.